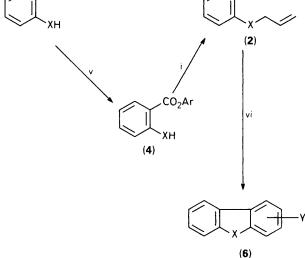

A Short Synthesis of Dibenzofurans and Dibenzothiophenes

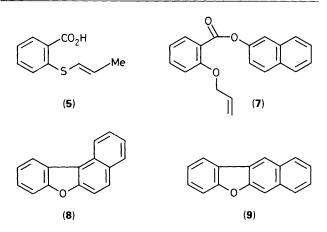

Michael Black,^a J. I. G. Cadogan,^{*b} and Hamish McNab*a

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K.
BP Research Centre, Chertsey Road, Sunbury-on-Thames, Middlesex TW16 7LN, U.K.

An efficient synthesis of dibenzofurans and dibenzothiophenes from aryl salicylates is described, which involves a novel rearrangement—extrusion—cyclisation sequence of *o*-substituted phenoxyl and thiophenoxyl radicals.

Traditional ways of synthesising dibenzofurans and dibenzothiophenes, including solution free radical methods, suffer from the disadvantages of low yields and/or inaccessibility of starting materials.^{1,2} We have developed a simple preparative route based on gas phase free radical methodology³ applicable to either ring system, using salicylates and phenols as readily available starting materials. The key step (Scheme 1) involves a novel rearrangement-extrusion-cyclisation sequence of the *o*-substituted phenoxyl and thiophenoxyl radicals (1) to create the new five-membered ring.

Scheme 2. Reagents and conditions: i, H₂C=C(H)CH₂Br, K₂CO₃, dimethylformamide; ii, NaOH; iii, SOCl₂; iv, ArOH, 4-dimethylaminopyridine; v, POCl₃, ArOH; vi, flash vacuum pyrolysis (650 °C, 10⁻³ Torr).


The ready availability of the radical precursors (2) via (3) or (4)⁴ is an attractive feature of the overall method.[†] However, the route via (4) is inappropriate for electron-withdrawing Ar groups, because of competing Smiles rearrangement in the subsequent alkylation, whereas the route via (3) fails for the S-allyl compound due to base-induced rearrangement⁵ to the S-propenyl derivative (5) at the ester hydrolysis stage [step (ii)].

The conditions for the pyrolysis (650 °C, 10^{-3} Torr) are compatible with the presence and electronic nature of a wide range of substituents (Table 1). Yields of dibenzofuran or dibenzothiophene derivatives (6) are generally high, particu-

[†] All new compounds were characterised by their spectra and by elemental analyses.

Table 1.	Precursor (2)		W: 14 - f (6)
	x	Y	Yield of (6)/ %
	0	н	62
		p-Me	70
		p-Cl	87
		$p-NO_2$	90
		p-CN	73
		p-OMe	80
		m-Me	59a,b
		o-Me	31
	S	н	88
		p-Me	70
		p-Cl	94
		<i>m</i> -Me	58ª
		o-Me	39

^a 1:1 mixture of 1- and 3-substituted products. ^b The overall yield estimated from ¹H NMR.

larly for *p*-substituted Ar groups, which give a single product isomer. The only significant side product is a trace of the phenol (ArOH), which can be removed readily by base extraction. Although *m*-methyl groups in Ar yield a statistical mixture of 1- and 3-substituted products, some selectivity has been observed in more complex cases. For example the β -naphthyl compound (7) gives a 4:1 ratio of $\gamma:\beta$ brazan [(8) and (9), respectively] in 91% overall yield on pyrolysis at 650 °C: intermolecular radical attack at the α - and β -positions of naphthalene gives similar regioselectivity.⁶

Gas-phase radical cyclisations on o-substituted aryl rings may be subject to complicating factors,³ but nevertheless 4-methyldibenzofuran and 4-methyldibenzothiophene could be isolated in 31 and 39% yields respectively.

Further studies of the mechanism of the pyrolysis step, and application to more complex systems are under investigation.

We thank British Petroleum p.l.c. for a Research Studentship (to M. B.).

Received, 23rd November 1989; Com. 9/05026D

References

- 1 M. V. Sargent and P. O. Stransky, Adv. Heterocycl. Chem., 1984, 35, 1.
- 2 J. Ashby and C. C. Cook, Adv. Heterocycl. Chem., 1974, 16, 181.
- 3 J. I. G. Cadogan, C. L. Hickson, and H. McNab, *Tetrahedron*, 1986, 42, 2135.
- 4 E.g., F. Mayer, Ber. Dtsch. Chem. Ges., 1909, 42, 1132.
- 5 D. S. Tarbell and M. A. McCall, J. Am. Chem. Soc., 1952, **74**, 48. 6 E.g., S. C. Dickerman and G. B. Vermont, J. Am. Chem. Soc.,
- 1962, **84**, 4150.